Differential and integral calculus

Tweet


Differential calculus

( uv ) ' = u ' v + uv ' ( uv )'=u'v+uv'

( u v ) ' = u ' v uv ' v 2 left( u over v right)'= {u'v-uv'} over v^2

lim x 0 sin x x = 1 lim from{x rightarrow 0} { { sin x } over {x} }=1

( x r ) ' = rx r 1 ( x^r )'=rx^{ r-1 }

( sin x ) ' = cos x ( sin x )'=cos x

( cos x ) ' = sin x ( cos x )' = - sin x

( tan x ) ' = 1 cos 2 x ( tan x )' = 1 over { cos^2 x }

( e x ) ' = e x ( e^x )'=e^x

( a x ) ' = a x log a ( a^x )'=a^x log a

( log x ) ' = 1 x ( log x )'= 1 over x

( log a x ) ' = 1 x log a ( log_a x )'=1 over { x log a }

Integral calculus

f ( x ) dx = f ( g ( t ) ) g ' ( t ) dt int f( x ) dx= int f ( g(t) )g'( t )dt

u ' v dx = uv uv ' dx int u'v dx = uv - int uv'dx

1 x dx = log | x | + C int {1 over x} dx = log abs{x} +C

a b f ( g ( x ) ) g ' ( x ) dx = α β f ( t ) dt where g ( x ) = t , g ( a ) = α , g ( b ) = β int from{a} to{b} f( g(x) )g'( x )dx= int from{ %ialpha } to{ %ibeta }f( t )dt newline where g( x)=t, g( a)=%ialpha ,g( b )=%ibeta

a b f ( x ) g ' ( x ) dx = [ f ( x ) g ( x ) ] a b a b f ' ( x ) g ( x ) dx int from{ a } to{ b }f( x )g'( x )dx= [f(x)g(x)]_a^b-int from{ a } to b f'( x)g(x)dx


Back