Matrix of axes is a rotation matrix

Tweet


Matrix with the axes of orthonormal coordinates is a rotation matrix. This matrix can convert from a certain coordinates to another certain coordinates.

For example, let's transform a point in x,y,z axes 3D orthonormal space to a point in a,b,c axes 3D orthonormal space. Through this conversion, we assume that the x axis becomes a axis, y axis becomes b axis, and z axis becomes c axis.

a = ( a x a y a z ) T b = ( b x b y b z ) T c = ( c x c y c z ) T bold a = left ( matrix{a_x # a_y # a_z} right ) ^ T newline bold b= left ( matrix{b_x # b_y # b_z} right ) ^ T newline bold c= left ( matrix{c_x # c_y # c_z} right ) ^ T

This transform matrix is expressed as follows.

( a x b x c x a y b y c y a z b z c z ) left ( matrix{a_x # b_x # c_x ## a_y # b_y # c_y ## a_z# b_z #c_z} right )

Check.

x = ( 1 0 0 ) T x= left ( matrix{1 # 0 # 0 } right ) ^T

( a x b x c x a y b y c y a z b z c z ) ( 1 0 0 ) = ( a x a y a z ) left ( matrix{a_x # b_x # c_x ## a_y # b_y # c_y ## a_z# b_z #c_z} right ) left ( matrix{1 ## 0 ## 0} right ) = left ( matrix{a_x ## a_y ## a_z} right )

Muliplying this matrix to x becomes a.

y = ( 0 1 0 ) T y= left ( matrix{0 # 1 # 0 } right ) ^T

( a x b x c x a y b y c y a z b z c z ) ( 0 1 0 ) = ( b x b y b z ) left ( matrix{a_x # b_x # c_x ## a_y # b_y # c_y ## a_z# b_z #c_z} right ) left ( matrix{0 ## 1 ## 0} right ) = left ( matrix{b_x ## b_y ## b_z} right )

Muliplying this matrix to y becomes b.

z = ( 0 0 1 ) T z= left ( matrix{0 # 0 # 1 } right ) ^T

( a x b x c x a y b y c y a z b z c z ) ( 0 0 1 ) = ( c x c y c z ) left ( matrix{a_x # b_x # c_x ## a_y # b_y # c_y ## a_z# b_z #c_z} right ) left ( matrix{0 ## 0 ## 1} right ) = left ( matrix{c_x ## c_y ## c_z} right )

Muliplying this matrix to z becomes c.

This transform matrix converts x,y,z space to a,b,c space.


Back