

Polarization-based surface normal estimation of black specular objects from multiple viewpoints

Daisuke Miyazaki, Takuya Shigetomi, Masashi Baba, Ryo Furukawa, Shinsaku Hiura, Naoki Asada Hiroshima City University

Concept 3D coordinates estimation methods Laser range finder Space carving 3D coordinates surface normal Multiview stereo SHAPE ESTIMATION Black textureless specular object Whole closed shape Photometric stereo **Polarization**

Surface normal estimation methods

[Theorem] Only quadric surfaces can be estimated when corresponding points are automatically searched

[Proof] S. Rahmann, "Reconstruction of quadrics from two polarization views," Iberian Conference on

Pattern Recognition and Image Analysis, 2003

[Our approach] Corresponding points obtained from space

▶ One Viewpoint

>> Two Viewpoints

▶ Multiple Viewpoints

▶ Apparatus

Light source Illumination dome Target object

Polarization camera

▶ Contribution

Shape estimation of black textureless specular object

- Impossible for common laser range finder
- Impossible for conventional
- multiview stereo
 Impossible for conventional
- photometric stereo

Both 3D coordinates and surface normal

- Reasonable combination of
- space carving and polarization
 Various application field

Polarization analysis of multiple viewpoints

- Solve ambiguity problem using space carving
- Surface normal of whole part is obtained
- SVD-based estimation robust to